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Abstract

[A] =

Central processor unit times and memory require- Aqm =
ments for a commonly used solver are compared {B} =

to that of a state-of-the-art, parallel, sparse solver, co =

The sparse solver is then used in conjunction with E =
three constrained optimization methodologies to as- F =

sess the relative merits of non-axisymmetric ver- f --

sus axisymmetric liner concepts for improving liner H, W, L=

acoustic suppression. This assessment is performed i =
with a multimodal noise source (with equal mode k --

amplitudes and phases) in a finite-length rectangu- NX =
lar duct without flow. The sparse solver is found to NY =

reduce memory requirements by a factor of five and NZ ---

central processing time by a factor of eleven when p =

compared with the commonly used solver. Results R, X =

show that the optimum impedance of the uniform
liner is dominated by the least attenuated mode, t

whose attenuation is maximized by the Cremer op- x, y, z

timum impedance. An optimized, four-segmented
liner with impedance segments in a checkerboard at- Re{ }

rangement is found to be inferior to an optimized
spanwise segmented liner. This optimized spanwise V 2

segmented liner is shown to attenuate substantially

more sound than the optimized uniform liner and
tends to be more effective at the higher frequencies.

The most important result of this study is the dis- P0

covery that when optimized, a spanwise segmented {(I)}
liner with two segments gives attenuations equal to w

or substantially greater than an optimized axially

segmented liner with the same number of segments.
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Nomenclature

system matrix

rigid-wall duct mode coefficients, Pa
vector of source effects, Pa

sound speed in duct, m/s

axial acoustic intensity, Pa m/s

noise suppression, dB

source frequency, Hz

height, width, and length of duct, m

(w/Co), freespace wavenumber, m-1
number of transverse grid points

number of spanwise grid points

number of axial grid points

time independent acoustic pressure, Pa
normalized acoustic resistance and

reactance

-- dimensional time, s

= transverse, spanwise, and axial

coordinate, m

-- real part of complex expression
= R + ix, normalized acoustic impedance

= three-dimensional Laplace

operator, m -2

--- normal derivative of acoustic pressure

at a boundary surface, Pa/m

-- ambient density, kg/m 3

-- vector of unknown node pressures, Pa

= (27r f/CO), angular frequency, s-1

Subscripts:
c, s = exit and source plane

I = the Ith impedance segment

opt = Cremer optimum impedance

N,M = upper indices of summation

q, m = lower indices of summation

Superscripts:

• = complex conjugate

I. Introduction

The current fleet of large commercial aircraft has

successfully achieved FAA noise certifications due, in



part,to successfulapplicationof passiveductliner
treatmentsto controlenginenoise.Oneofthegoals
of NASAis to developtechnologiesto improvethe
sound-absorbingpropertiesof thesetreatmentsso
that theyremaineffectiveinmodern,low-dragpro-
ducing,wide-chord-fanenginesJFigure1isanillus-
trationof axisymmetricandnon-axisymmetricpas-
siveduct linerconceptsthat havepotentialappli-
cationto this classof engines.Initially,liner re-
searchwascenteredon theuniformlinerthat is in-
stalledin the engineductsof the currentaircraft
fleet. Lansingand Zorumski2 realizedthat liners
couldbemademoreeffectivebytakingadvantageof
acousticimpedancechangesinaxialsegments.3Con-
sequently,the axiallysegmentedlinerwasstudied
extensivelybyseveralinvestigatorsin the1970's.3-s
However,theaxiallysegmentedliningconfiguration
wasnotimplementedin modernaircraftenginesbe-
causetheiroptimumdesignrequiresanaccuratede-
scriptionofthemodaldistributionofacousticenergy
in the soundsource.Theproblemof determining
the modalamplitudeandphasingof sourcemodes
withinwide-chord-fanengineductsisextremelydif-
ficult. In addition,moderninletsmaynotprovide
sufficientlength-to-diameterratios(L/D) for effi-
cientuseof theaxiallysegmentedlinerconcept.

In the non-axisymmetricliner concepts(see
Fig. 1),theductlengthislessimportantbecausethe
segmentationisaroundthecircumferenceinsteadof
alongtheaxis.Thisis importantbecausethewide-
cord-fanengineductsof todayhaveLID < 1. A

beneficial effect of the circumferentially segmented

liner configuration was first observed in the mid-
1970s by Mani, 9 who simply blocked segments of

a uniform liner with strips of aluminum tape. Im-

proved acoustic performance of this configuration
was ascribed to mode reconditioning (redistribution

of acoustic energy into higher order circumferen-
tial modes that are more rapidly suppressed by the

liner). Several studies, all based on modal analysis,
have followed the experiment of Mani. 1°-13 How-

ever, the potential of optimized, circumferentially

segmented liners has never been fully evaluated be-

cause the modal analysis techniques have been based
on the attenuation of a single mode.

The potential synergy between axial and circum-

ferential segmentation can be implemented by the

checkerboard liner (Fig. 1). To date, no exper-

imental or analytical studies of this liner configu-
ration have been reported. This is at least par-

tially because the checkerboard liner is not amenable

to multimodal analysis techniques. The checker-

board liner configuration requires the use of a fully
three-dimensional analysis code for accurate model-

ing. However, three-dimensional aeroacoustic anal-

ysis codes are not yet available because of the exces-

sive computational time and memory requirements

of the most commonly use equation solvers. It is in-

teresting that although major advances in equation

solving methodologies have occurred during the past

decade, these advances have yet to be implemented

into major aeroacoustic analysis codes.

The work presented in this paper was motivated

by the need to implement more efficient equation
solvers into aeroacoustic liner design codes and by

the need for more effective passive liner treatments

for the next generation of aircraft engines. In this

paper, computation times and memory requirements
for a commonly used solver are compared with those

of a state-of-the-art, parallel, sparse solver. The

sparse solver is used in conjunction with three op-

timization algorithms to perform liner optimization

studies. The integrity of each algorithm is evalu-

ated by comparing results obtained from each opti-

mization method. We perform an initial assessment

of tile non-axisymmetric liner concept by compar-

ing its optimum noise attenuation to those of opti-

mized uniform and axially segmented liners. This

assessment is performed in a finite-length duct at

two source frequencies (4.0 kHz and 7.0 kHz) with-
out flow. All cut-on modes are included in the

sound source definition and the analysis uses a geom-

etry corresponding to that of the 'Grazing Incidence
Tube' in the NASA Langley Research Center Flow

Impedance Test Facility. This geometry was picked

to allow convenient experimental collaboration at a
later date.

II. Statement of Problem

Figure 2 is a schematic of the three-dimensional

duct and right handed coordinate system used to

model the grazing incidence impedance tube (GIT).

The liner is axially centered in the test section (the
section of the duct between the source and exit

plane). The upper wall and two sidewalls of the

test section are rigid. Strictly speaking, the noncir-

cular geometry of the GIT does not permit a study

of circumferentially segmented liners. However, we

will allow the liner impedance to be segmented in

the spanwise direction (y direction) of the GIT. This

will cause scattering of acoustic energy into spanwise

modes, thus simulating the effects of circumferential

segmentation in a circular geometry. Acoustic waves

will be propagated from left to right across the sur-
face of the liner and into a termination section. The

test section is 40.64 cm long and has a 5.08 × 5.08

cm cross section. The source and exit planes are

located in rigid-wall sections of the duct, 20.32 cm



fromtheleadingandtrailingedgeof the liner,re-
spectively.Theexit planeacousticimpedanceand
linersurfaceacousticimpedancearefunctionsofpo-
sition. Throughoutthis paperall impedancesare
assumednormalizedwith respectto thecharacter-
istic impedance(p0c0)of theair in theduct. The
problemat handis to determinethelineracoustic
impedancethat maximizesthenoiseattenuatedby
eachof theliningconcepts.

III. Governing Equations

The mathematical problem is to find the solution

to Helmholtz's equation 14

V_p + k2p = 0 (1)

where a time convention ei_ is assumed. The

boundary condition along the rigid-wall portions of

the duct is equivalent to the requirement that the

gradient of acoustic pressure normal to the wall van-

ishes, that is

0R = 0 (2)
On

At the duct exit (z = L), the ratio of acoustic

pressure to the axial component of acoustic parti-

cle velocity must equal the exit acoustic impedance.

When expressed in terms of the acoustic pressure,

this boundary condition is

Op _ -ikp (3)
Oz Ce

The liner is assumed to be locally reacting, so that

the liner boundary condition is 15

Op ikp
-- (4)

On

Along the source plane (z = 0) of the duct, the

sound source pressure, p_, is known. Therefore, the

sound source boundary condition is

p = p, (5)

The sound source affects both the optimum liner

impedance and the maximum amount of sound at-
tenuated by the lining. For this paper, a modal en-

ergy distribution appropriate for a multimodal noise
source located in a rigid-wall section of duct

N M

p, = _ _ Aqm cos (qTry/W) cos (mTrx/H) (6)
q=0 ra=0

is used. We assume that each cut-on source mode

has unit amplitude and zero phase (Aqm = 1). Note

that equation (6) is approximately an equal energy

modal assumption for which the source in the rigid-

wall duct does not vary appreciably with the intro-

duction of the liner. Equations (1)-(6) form a well-

posed boundary value problem that can be solved to
determine uniquely the acoustic pressure field in the

duct. An exact analytical solution for this field is

not available for a general input data set; therefore,
a numerical method is needed to obtain the solution

for this field.

IV. Numerical Solution for Acoustic Pressure

The numerical method used to obtain the so-

lution for the acoustic pressure field is described

elsewhere. 16 Only the details necessary for clarity

and continuity are presented herein. The solution

to equations (1)-(6) is obtained with a conventional
Galerkin Finite Element Method using a brick ele-

ment and linear basis functions. This methodology

results in a large, linear, sparse, and symmetric sys-

tem of complex equations of the form:

[A]{(I)} = {B} (7)

To solve equation (7), a parallel, direct, sparse

solver factorizes [A] and then obtains the solution
vector using the sequential operations of backward

and forward substitution. The solver employs a

compressed column storage scheme to reduce stor-

age overhead. Only the nonzero coefficients in the

upper triangular part of [A] are stored, along with
two pointer arrays which store the column num-

bers and starting indexes of these nonzero coeffi-

cients. To obtain the speed necessary for efficient

three-dimensional solutions, the sparse solver uses

two accelerators: equation reordering 17'ts to reduce

fill during the factorization of [A], and paralleliza-

tion (the equation solver runs on multiple processors

simultaneously).

The sparse solver initially selected to solve equa-

tion (7) was a complex version of the Vectored
Sparse Solver (VSS). t9 This software package is a

commercial version of the NASA-developed general-

purpose solver 2° (GPS) that was modified for com-

plex arithmetic and commercialized by the Solver-

soft Corporation in 1999. However, since that time

Silicon Graphics Incorporated (SGI) has developed

a parallel sparse solver (ZPSLDLT) that is contained

in version 1.4 of the SGI/Cray Scientific Library

(SCSL). Studies performed by the authors show that

the complex version of VSS and ZPSLDLT have

nearly identical time and memory requirements. In

addition, ZPSLDLT is readily available to the pub-

lic whereas VSS is proprietary. Consequently, this

paper uses ZPSLDLT to solve equation (7).



V. Objective Y_nction

The segmented liner configurations reported in

this paper are restricted to a rectangular geome-

try with two impedance segments as depicted in fig-

ure 3. Each segment of the segmented liner has been

purposely designed to have the same cross-sectional

area. Additionally, each segmented liner may de-
fault to a uniform liner during liner optimization.

However, one segmented liner may not default to

another (i.e., the checkerboard liner cannot default

to the spanwise segmented liner, etc.). The goal is to
determine the optimum acoustic impedance of each

liner segment that maximizes the noise attenuated

by the liner. The authors use the reduction in the

sound power from the source to the exit of the duct

(F) as an objective function that is maximized to
determine the optimal attenuation of the liner. This

objective function is a real, positive function, has
units of decibels, and is defined as 14

Re £ f0"E(x,y,
F = 10log10 .Re{fW fH E(x,y,L)dxdy} (S)

E(z, y, z) - ip(x, y, z) Op*(x, y, z)
pow Oz (9)

Because the acoustic pressure field, p, is known

only at a discrete number of points in the duct, the

integration in equation (8) is performed numerically

using Simpson's rule for numerical integration.

VI. Optimization Methods

We use the attenuation (F) produced by the liner

as an objective function and determine the optimum

acoustic impedance for each liner segment. For the
uniform liner, two parameters are free to vary in

the optimization: the acoustic resistance (R1) and

reactance (X1). Thus, contours of constant attenua-
tion (referred to here as a contour map (CM)) will

be plotted in the impedance plane to determine the

global optimum point for the uniform liner. The seg-

mented liners (Fig. 3) have four parameters to vary:

the acoustic resistances (R1,R2) and the acoustic

reactances (X1,)/2). Since it is no longer possible

to plot contours of constant attenuation in the four-

dimensional space of the segmented liner, we used an
iterative two-step procedure to determine the opti-

mum point. The iterative procedure is as follows:

1. Hold the acoustic impedance of the first section

_1 equal to that of the optimum uniform liner
and use a CM to obtain an optimum (2.

2. Hold _2 at the optimum from step 1 above and

use a CM to obtain a new optimum _1.

The above two-step iterative procedure is repeated

until the attenuation of the segmented liner con-

verges within some specified tolerance. This opti-
mization method is referred to herein as the itera-

tive contour deformation method (ICDM). A simi-

lar procedure to that used here was used by Kraft s

to design an axially segmented liner. Note that the
ICDM is not automated because each iteration must

be guided by hand, using results obtained from a
CM.

The optimal point for each segmented liner is also

obtained using two automated optimization algo-

rithms. The first automated optimization algorithm

was a Davidon-Fletcher-Powell (DFP) optimization

algorithm. 21 This algorithm has the disadvantages

of requiring both an initial starting location and a

difference approximation to the gradient of the ob-

jective function. Additionally, the method is known

to converge to local optima. The second automated

optimization algorithm is a genetic algorithm (GA).

The GA initializes a random sample of individuals

with different parameters to be optimized using evo-
lution via survival of the fittest. In contrast to the

DFP, the GA does not require calculation of the gra-

dient of the objective function, nor does it require

an initial starting location. Fhrthermore, when com-

pared with the DFP the GA increases the probabil-

ity of obtaining a global optimum point. Both op-
timization methods are constrained so that at the

optimum point, each impedance segment contains

physically realistic acoustic resistance (0 _< R_ <: 10)

and acoustic reactance (-10 < X_ -< 10) values. A

full description of these two automated optimization

algorithms is beyond the scope of this paper. Read-

ers who are unfamiliar with the DFP and GA algo-

rithins are encouraged to consult references 21 and
22.

VII. Results and Discussion

Results in this section are presented with the fol-

lowing three, objectives in mind:

1. to demonstrate the efficiency of the sparse

solver compared to the most commonly used
solver

2. to test the integrity of the optimization method-

ologies

3. to assess the relative merits of the non-

axisymmetric liner concept

The accuracy of the sparse solver has been pre-

sented in a previous paper 16 and is not addressed

further in this work. All results presented in this

4



Table1 Minimumpointsforresolvingcut-onmodes

f, kHz NX NY NZ NX*NY*NZ
4.0 6 6 114 4,104

7.0 12 12 200 28,800

11.0 18 18 313 101,412

14.0 24 24 399 229,824

17.0 30 30 484 435,600

21.0 36 36 599 776,304

Table 2 Sparse solver parallel speedup at 14.0 kHz

Number of Parallel

Processors Speedup
2 1.79

4 3.15

8 4.60

16 5.80

paper were computed on an SGI ORIGIN 2000 com-

puter platform using double-precision (64-bit) arith-

metic. Note that the physically correct exit acous-

tic impedance for a multimodal sound source should

simulate a nonrefiecting termination. Therefore, all

liners were designed with an exit acoustic impedance

that is nonreflecting to a plane wave source (_e = 1).

This exit acoustic impedance was chosen because in

an optimally designed liner, higher order modes gen-

erated by the sound source will be more rapidly at-

tenuated than the plane wave mode. Therefore, only

the plane wave mode is expected to carry significant

acoustic energy to the exit plane. Furthermore, this

plane wave mode should exit the duct test section

with minimal reflections using the chosen exit acous-

tic impedance.

A. Solver Efficiency Studies

Table 1 shows the minimum number of points

required to resolve all cut-on modes (assuming 12

points per wavelength) in the rigid-wall duct for fre-

quencies up to 21.0 kHz. Here, NX, NY, and NZ
are the minimum number of equally spaced points

in the x, y and z directions, respectively, to resolve
all cut-on modes. The current industry practice is

to use scale models as small as 1/5 the size of full-

scale engines in liner designs. The largest full-scale

frequency of interest is typically 4.0 kHz. Thus, the

largest frequency of interest for the smallest scale (a

1/5-scale model) is 20.0 kHz. To fully capture this

frequency range, the results in table 1 are given up
to a frequency of 21.0 kHz. Note that at the highest

frequency (21.0 kHz) a matrix order of 776,304 is re-
quired to accurately resolve all cut-on modes. Typi-

cally, band solvers have been the solver of choice for

obtaining the solution to the indefinite, linear sys-

tem given by equation (7). However, it will be shown
that band solvers are too expensive for optimization

studies in three spatial dimensions and newer more

efficient equation solving methodologies are needed.
To better understand the improvement in efficiency

of equation solving methods over tile past decade,

it is helpful to compare the central processor unit

(CPU) time and random access memory (RAM) re-
quired to obtain the solution to equation (7) using

a commonly-used band solver to that of the sparse

solver (ZPSLDLT) used in this paper.
The CPU time and RAM for the band and sparse

solvers are depicted in figure 4. Results are pre-

sented using a dual axis system with the CPU time

and RAM referenced to the Y1 and Y2 axis, respec-

tively. CPU times are given in kiloseconds (ks) and

the RAM requirements are given in gigabytes (GB).

Results in the figure were computed on a single pro-

cessor and without equation reordering. As shown

in the figure, at higher frequencies, the sparse solver

consumes 20% less CPU time (2 hrs less) and only
half the RAM of the band solver. Typically, op-

timizers require thousands of function evaluations

(i.e., passes through the solver) to obtain an opti-

mum point. Without further increases in processing

speed, it will be impractical to perform optimization
studies even with the more efficient sparse solver at

the higher frequencies.

The sparse solver has been accelerated with equa-
tion reordering to minimize fill during matrix fac-

torization. Figure 5 shows the additional reduction

in CPU time that can be obtained using multiple

minimum degree (MMD) reordering 17 and nested

dissection (ND) reordering 18 on a single processor.

The savings in CPU time at the higher frequencies

due to equation reordering are clearly evident. Rel-

ative to the CPU time without reordering, MMD

reordering reduces the CPU time by 14%, whereas

a reduction of nearly 64% is achieved with ND re-

ordering. Results in figure 6 show how the reorder-

ing schemes reduce the RAM requirements of the

sparse solver. Relative to the RAM requirements

without reordering, note that at higher frequencies
MMD and ND reordering reduces the RAM require-

ments of the solver by factors of two and three, re-

spectively. Thus, compared with the band solver,
the sparse solver with ND reordering reduces the

CPU time and RAM requirements by factors of 3.4

and 2.6, respectively, at the higher frequencies.

A second method for reducing the CPU time of

the sparse solver is parallelization. Table 2 com-



parestheparallelspeedupobtainedat a frequency
of 14.0kHzwhenthe solveris runon2, 4, 8 and
16processors.Thereferencetimingfor computing
the parallelspeedupis that requiredfor a solution
usingtheparallelversionof thesparsesolverona
singleprocessor.Thesolverisobservedto runef-
ficientlyon up to fourprocessors.Notethat the
speedupis1.79and3.15ontwoandfourprocessors,
respectively.Thereisonlyamodestimprovementin
parallelspeedupfor morethanfourprocessors.Fur-
thermore,thesparsesolverrunningononlyfourpro-
cessorswithNDreorderingreducestheCPUtimeby
a factorof nearlyelevenwhencomparedwith that
ofthemorecommonlyusedbandsolver(seeFig. 4).

B. Optimization Studies
The uniform, axially segmented, spanwise seg-

mented, and checkerboard liners are designed at two

source frequencies (4.0 kHz and 7.0 kHz). At 4.0 kHz

the sound source contains three cut-on modes (the

(0,0), (1,0), and (0,1) modes), while at 7.0 kHz the
sound source contains six cut-on modes (the (0,0),

(1,0), (0,1), (1,1), (2,0), and (0,2) modes). Based

upon the efficiency studies of the previous section,
it was decided to run the sparse solver in parallel

on four processors using ND reordering. The initial

liner design used a spatial grid that was designed to

capture all cut-on modes in a rigid-wall duct for the

7.0 kHz sound source (NX = NY = 13, NZ = 201).

After the optimum liner was determined, a grid re-

finement study was conducted, and it was deter-

mined that this spatial grid was fine enough to accu-

rately capture the attenuation at the optimum point.

Uniform Liner

Figures 7 and 8 show a contour map of the uni-
form liner attenuation function at 4.0 and 7.0 kHz,

with evenly spaced grids of 100 and 200 points

along the resistance and reactance axes, respec-

tively. Note that the attenuation function has a sin-

gle, well-defined optimum point at each frequency

(_ = 1.05- 0.80i and F = 41.0 dB at 4.0 kHz;

= 1.48 - 2.0i and F = 17.2 dB at 7.0 kHz). The

DFP and GA algorithms were also used to obtain the

optimum point of the uniform liner. The DFP algo-
rithm was initialized from the following four starting

locations in the impedance plane

_1 = 2.5- 5.0i

(1 = 2.5+5.0i

(1 = 7.5- 5.0i

(1 = 7.5+5.0i

(10)

The optimum points obtained with the DFP for

each of these starting locations were nearly identical.

Generally, the DFP converged to the optimum point

Table 3a Uniform liner results for DFP

/, kHz RI X1 F,dB
4.0 0.96 -0.78 45.80

7.0 1.47 -1.91 17.20

Table 3b Uniform liner results for GA

f, kHz R1 )C1 F,dB
4.0 0.97 -0.77 45.60

7.0 1.48 -1.90 17.20

Table 3c Uniform liner results for CM

/, kHz R1 X1 F,dB
4.0 0.98 -0.80 40.50

7.0 1.45 -1.90 17.10

in four to eight iterations (depending on the starting

location) and each iteration required approximately
4 minutes of CPU time. It should be noted that the

GA results were computed using a population size of

forty and were observed to converge in forty to fifty

generations.

The uniform liner optimum points achieved with

the DFP, GA, and CM are given in tables 3a,

3b, and 3c, respectively. Note that each opti-
mization methodology converged to nearly the same

impedance at each frequency, and the optimum at-

tenuations are nearly identical at 7.0 kHz. How-

ever, at 4.0 kHz, the DFP and GA optimum atten-
uations differ from the CM result by approximately

5 dB (nearly 10%). This difference in attenuations
for the different algorithms at 4.0 kHz reflects the

sensitivity of the attenuation to changes in the sec-
ond and third decimal digit of the impedance at the

optimum point. This indicates that the impedance

grid used to construct the CM was not fine enough
to determine the optimum attenuation with greater

accuracy at the optimum point. It is of interest

that maximum attenuation is significantly reduced

when the frequency is increased from 4.0 to 7.0 kHz

(see tables aa, 3b, and 3c). The ineffectiveness of
the uniform liner at the higher frequencies is a pri-

mary reason for investigating the segmented lining

concepts. Furthermore, a study of the contour plot

tabular data (available from the authors by request)

shows that away from the optimum point, the great-
est attenuation occurs at resonance (X = 0.0). How-

ever, for finite values of acoustic reactance (and away

from the optimum point) the largest attenuation is
obtained when the acoustic resistance and reactance



Table4 StartinglocationsfortheDFP

Location _1 _2

1 2.5 - 5.0i

2 2.5 - 5.0i

3 2.5 - 5.0i

4 2.5 - 5.0i

5 2.5 + 5.0i

6 2.5 + 5.0i

7 2.5 + 5.0i

8 2.5 + 5.0i

9 7.5 - 5.0i

10 7.5 - 5.0i

11 7.5 - 5.0i

12 7.5 - 5.0i

13 7.5 + 5.0i

14 7.5 + 5.0i

15 7.5 + 5.0i

16 7.5 + 5.0i

2.5 - 5.0i

2.5 + 5.0i
7.5 - 5.0i

7.5 + 5.0i
2.5 - 5.0i

2.5 + 5.0i
7.5 - 5.0i

7.5 + 5.0i

2.5 - 5.0i

2.5 + 5.0i

7.5 - 5.0i

7.5 + 5.0i
2.5 - 5.0i

2.5 + 5.0i
7.5 - 5.0i

7.5 + 5.0i

have equal magnitude but are opposite in sign.

The optimum acoustic impedance obtained from
each of the uniform liner optimization methods (see

tables 3a, 3b, and 3c) is nearly identical to the Cre-

mer optimum acoustic impedance 23'24 for the lowest

order mode in the infinite duct

kH
_opt = (0.929 - 0.744i)-- (11)

7r

This result confirms that even for a multimodal

source, the optimum acoustic impedance in a finite

length duct is still dominated by the least attenu-

ated mode, whose attenuation will be maximized by

the Cremer optimum acoustic impedance in an infi-
nite duct. The fact that the current methods repro-

duce (almost exactly) the Cremer optimum acoustic
impedance gives credence to the methodologies used

in this paper.

Segmented Liners

The ICDM, DFP, and GA algorithms have been

used with the segmented liners in an attempt to ob-

tain optimum attenuations greater than that of an

optimum uniform liner. The ICDM was not suc-
cessful when used with the segmented liners. It was

discovered that the ICDM converged to the uniform

liner optimum. The failure of the ICDM to converge

to an optimum point different than the uniform liner

is contrary to the results of reference 8. However, the

reader is reminded that the duct geometry, source,

and frequency used in this study are significantly dif-
ferent from those used in reference 8. Thus, only the

DFP and GA optimization results are presented for

the segmented liners. Furthermore, in the segmented

Table 5a Checkerboard liner results for DFP

f, kHz R1 X1 R2 X2 F, dB
4.0 0.96 -0.77 0.95 -0.78 45.10

7.0 1.47 -1.90 1.46 -1.91 17.20

Table 5b Checkerboard liner results for GA

f, kHz R1 X1 R2 X2 F, dB
4.0 0.96 -0.78 0.96 -0.77 45.20

7.0 1.48 -1.91 1.47 -1.90 17.20

lining design studies, the DFP was initiated from the
sixteen different starting locations given in table 4.

In contrast to the uniform liner optimizations, it was

found that the segmented liner attenuation function

contains multiple local optima. Thus, the DFP re-

sults showed great sensitivity to the starting loca-

tion; therefore, the reported DFP result corresponds

to the local optimum with the largest attenuation
out of the sixteen starting locations. Tables 5a

and 5b compare the optimum attenuation obtained
from the DFP and GA algorithm, respectively, for
the; checkerboard liner. Observe that both the DFP

and GA returned the optimum uniform liner design

point for the checkerboard liner. Tables 6a and 6b

compare the optimum points obtained with the DFP
and GA, respectively, for the axially segmented liner.

For this liner, both optimization methodologies give

nearly the same optimum attenuation, but the op-

timum impedances predicted (from each method)
for the first and second segments are distinctly dif-

ferent. Optimization results for the spanwise seg-

mented liner are given in tables 7a and 7b. Note

that for this liner, the two optimization methodolo-

gies show significant differences in both the optimum
attenuation and the impedance of the second seg-

ment at 4.0 kHz. On the other hand, for the 7.0 kHz

source, there is only a modest difference in the at-

Table 6a Axially segmented liner results for DFP

f, kHz R1 Xl R2 X2 F, dB
4.0 0.95 -0.94 0.88 -0.51 48.52

7.0 0.86 -2.29 1.45 -0.70 32.90

Table 6b Axially segmented liner results for GA

f, kHz R1 X1 R2 X2 F, dB
4.0 0.83 -0.98 1.30 0.03 49.02

7.0 0.91 -2.40 1.30 -0.90 35.60



Table7aSpanwisesegmentedlinerresultsforDFP

f, kHz R1 X1 R2 )i2 F, dB
4.0 1.00 -0.80 0.93 -0.76 47.02

7.0 0.69 -2.70 0.83 -0.91 27.72

Table 7b Spanwise segmented liner results for GA

f, kHz R1 )il R2 )_2 F, dB
4.0 0.91 -0.98 0.76 -0.28 58.80

7.0 0.91 -2.47 1.14 -0.90 31.54

tenuation and impedances at the optimum point.

The most significant result to be gleaned from

these segmented liner studies is that the axially seg-

mented and spanwise segmented liners give better

attenuation than the uniform liner (see tables 3a, 3b,

and 3c). At 4.0 kHz, the optimized axially and span-

wise segmented liners give 3.0 dB and 14.0 dB, re-

spectively, of additional attenuation compared with

that of the optimized uniform liner. The span-

wise segmented liner is clearly a better attenuator

of sound than the axially segmented liner when opti-
mized for a 4.0 kHz multimodal source. At 7.0 kHz,

the segmented liner designs have nearly the same
attenuation but distinct acoustic impedance values.

Furthermore, at 7.0 kHz, the segmented liner atten-

uations are nearly double that of the uniform liner.

In general, the DFP optimum design point gives less
attenuation than the GA design point for the seg-

mented liners (see tables 6a, 6b, 7a, and 7b).

VIII. Conclusions

Based upon the results of this study, the following
conclusions are drawn:

1. The sparse solver (running in parallel on four

processors with nested dissection reordering) re-
duces CPU time and RAM requirements by fac-

tors of eleven and five, respectively, when com-

pared with the commonly used band solver.

2. Even for a multimodal noise source in a finite-

length duct, the optimum uniform liner acoustic

impedance is dominated by the least attenuated
mode, in which attenuation is maximized by the

Cremer optimum acoustic impedance.

3. The Davidon-Fletcher-Powell (DFP) and ge-

netic algorithms (GA) are useful design tools

for the segmented liner, but the iterative con-

tour deformation method (ICDM) returns the

uniform liner optimum point.

4. Because segmented liners contain multiple local

optima, the genetic algorithm generally leads to

a better design than the DFP algorithm.

5. An optimized four-segmented liner with two dis-

tinct impedance segments arranged to form a

checkerboard pattern is an inferior design com-

pared with an optimum two-segment liner.

6. An optimized spanwise segmented liner is more

effective at attenuating sound than an opti-
mized uniform liner. It tends to be more effec-

tive at the higher frequencies, and gives attenu-

ations equal to or substantially greater than an

optimized axially segmented liner.

The non-axisymmetric liner optimization results
are sufficiently encouraging to warrant additional

studies. It is important to note that the conclusions

of this paper apply only to the source, frequency,

and duct geometry for which this study was con-
ducted. Considerable care should be exercised in

attempting to generalize these conclusions to other

geometries, source structures, and frequencies. Fu-

ture work is expected to target frequencies in the

8.0 kHz to 21.0 kHz range. Sample calculations pre-

sented in this paper (Fig. 5) show that a single

function evaluation with the current sparse solver at

21.0 kHz requires nearly an hour of CPU time. As-

suming that 1,000 to 2,000 function evaluations are

required to obtain the optimum, the current solver
would have to be accelerated nearly two orders of

magnitude before optimization studies become prac-

tical at the highest frequency. Since it is unlikely

that the current sparse solver can be accelerated to

this degree, it seems reasonable that a response sur-

face methodology 25 will most likely be required for

function evaluations at the higher frequencies. Fur-

thermore, if more segments (with distinct acoustic

impedance values) are desired at even moderate fre-

quencies, a response surface methodology will most

likely be required. In addition, the designs consid-

ered in this paper have been concerned with noise

suppression at a single frequency. However, the to-
tal performance of a lining configuration must be

measured by its off-design performance as well. Fh-

ture investigations should also be concerned with off-

design performance.
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Fig. 3. Schematic of rectangular duct liner

configurations.

Fig. 1 . Passive liner impedance concepts.
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Fig. 4. Single processor CPU times and RAM

requirements for the band and sparse solvers.
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